hammer/src/backends/packrat.c

289 lines
9.6 KiB
C

#include <assert.h>
#include <string.h>
#include "../internal.h"
#include "../parsers/parser_internal.h"
// short-hand for creating lowlevel parse cache values (parse result case)
static
HParserCacheValue * cached_result(HParseState *state, HParseResult *result) {
HParserCacheValue *ret = a_new(HParserCacheValue, 1);
ret->value_type = PC_RIGHT;
ret->right = result;
ret->input_stream = state->input_stream;
return ret;
}
// short-hand for creating lowlevel parse cache values (left recursion case)
static
HParserCacheValue *cached_lr(HParseState *state, HLeftRec *lr) {
HParserCacheValue *ret = a_new(HParserCacheValue, 1);
ret->value_type = PC_LEFT;
ret->left = lr;
ret->input_stream = state->input_stream;
return ret;
}
// Really library-internal tool to perform an uncached parse, and handle any common error-handling.
static inline HParseResult* perform_lowlevel_parse(HParseState *state, const HParser *parser) {
// TODO(thequux): these nested conditions are ugly. Factor this appropriately, so that it is clear which codes is executed when.
HParseResult *tmp_res;
if (parser) {
HInputStream bak = state->input_stream;
tmp_res = parser->vtable->parse(parser->env, state);
if (tmp_res) {
tmp_res->arena = state->arena;
if (!state->input_stream.overrun) {
size_t bit_length = h_input_stream_pos(&state->input_stream) - h_input_stream_pos(&bak);
if (tmp_res->bit_length == 0) { // Don't modify if forwarding.
tmp_res->bit_length = bit_length;
}
if (tmp_res->ast && tmp_res->ast->bit_length != 0) {
((HParsedToken*)(tmp_res->ast))->bit_length = bit_length;
}
} else
tmp_res->bit_length = 0;
}
} else
tmp_res = NULL;
if (state->input_stream.overrun)
return NULL; // overrun is always failure.
#ifdef CONSISTENCY_CHECK
if (!tmp_res) {
state->input_stream = INVALID;
state->input_stream.input = key->input_pos.input;
}
#endif
return tmp_res;
}
HParserCacheValue* recall(HParserCacheKey *k, HParseState *state) {
HParserCacheValue *cached = h_hashtable_get(state->cache, k);
HRecursionHead *head = h_hashtable_get(state->recursion_heads, &k->input_pos);
if (!head) { // No heads found
return cached;
} else { // Some heads found
if (!cached && head->head_parser != k->parser && !h_slist_find(head->involved_set, k->parser)) {
// Nothing in the cache, and the key parser is not involved
cached = cached_result(state, NULL);
cached->input_stream = k->input_pos;
}
if (h_slist_find(head->eval_set, k->parser)) {
// Something is in the cache, and the key parser is in the eval set. Remove the key parser from the eval set of the head.
head->eval_set = h_slist_remove_all(head->eval_set, k->parser);
HParseResult *tmp_res = perform_lowlevel_parse(state, k->parser);
// update the cache
if (!cached) {
cached = cached_result(state, tmp_res);
h_hashtable_put(state->cache, k, cached);
} else {
cached->value_type = PC_RIGHT;
cached->right = tmp_res;
cached->input_stream = state->input_stream;
}
}
return cached;
}
}
/* Setting up the left recursion. We have the LR for the rule head;
* we modify the involved_sets of all LRs in the stack, until we
* see the current parser again.
*/
void setupLR(const HParser *p, HParseState *state, HLeftRec *rec_detect) {
if (!rec_detect->head) {
HRecursionHead *some = a_new(HRecursionHead, 1);
some->head_parser = p;
some->involved_set = h_slist_new(state->arena);
some->eval_set = NULL;
rec_detect->head = some;
}
HSlistNode *it;
for(it=state->lr_stack->head; it; it=it->next) {
HLeftRec *lr = it->elem;
if(lr->rule == p)
break;
lr->head = rec_detect->head;
h_slist_push(lr->head->involved_set, (void*)lr->rule);
}
}
// helper: true iff pos1 is less than pos2
static inline bool pos_lt(HInputStream pos1, HInputStream pos2) {
return ((pos1.index < pos2.index) ||
(pos1.index == pos2.index && pos1.bit_offset < pos2.bit_offset));
}
/* If recall() returns NULL, we need to store a dummy failure in the cache and compute the
* future parse.
*/
HParseResult* grow(HParserCacheKey *k, HParseState *state, HRecursionHead *head) {
// Store the head into the recursion_heads
h_hashtable_put(state->recursion_heads, &k->input_pos, head);
HParserCacheValue *old_cached = h_hashtable_get(state->cache, k);
if (!old_cached || PC_LEFT == old_cached->value_type)
h_platform_errx(1, "impossible match");
HParseResult *old_res = old_cached->right;
// rewind the input
state->input_stream = k->input_pos;
// reset the eval_set of the head of the recursion at each beginning of growth
head->eval_set = h_slist_copy(head->involved_set);
HParseResult *tmp_res = perform_lowlevel_parse(state, k->parser);
if (tmp_res) {
if (pos_lt(old_cached->input_stream, state->input_stream)) {
h_hashtable_put(state->cache, k, cached_result(state, tmp_res));
return grow(k, state, head);
} else {
// we're done with growing, we can remove data from the recursion head
h_hashtable_del(state->recursion_heads, &k->input_pos);
HParserCacheValue *cached = h_hashtable_get(state->cache, k);
if (cached && PC_RIGHT == cached->value_type) {
state->input_stream = cached->input_stream;
return cached->right;
} else {
h_platform_errx(1, "impossible match");
}
}
} else {
h_hashtable_del(state->recursion_heads, &k->input_pos);
state->input_stream = old_cached->input_stream;
return old_res;
}
}
HParseResult* lr_answer(HParserCacheKey *k, HParseState *state, HLeftRec *growable) {
if (growable->head) {
if (growable->head->head_parser != k->parser) {
// not the head rule, so not growing
return growable->seed;
}
else {
// update cache
h_hashtable_put(state->cache, k, cached_result(state, growable->seed));
if (!growable->seed)
return NULL;
else
return grow(k, state, growable->head);
}
} else {
h_platform_errx(1, "lrAnswer with no head");
}
}
/* Warth's recursion. Hi Alessandro! */
HParseResult* h_do_parse(const HParser* parser, HParseState *state) {
HParserCacheKey *key = a_new(HParserCacheKey, 1);
key->input_pos = state->input_stream; key->parser = parser;
HParserCacheValue *m = NULL;
if (parser->vtable->higher) {
m = recall(key, state);
}
// check to see if there is already a result for this object...
if (!m) {
// It doesn't exist, so create a dummy result to cache
HLeftRec *base = NULL;
// But only cache it now if there's some chance it could grow; primitive parsers can't
if (parser->vtable->higher) {
base = a_new(HLeftRec, 1);
base->seed = NULL; base->rule = parser; base->head = NULL;
h_slist_push(state->lr_stack, base);
// cache it
h_hashtable_put(state->cache, key, cached_lr(state, base));
// parse the input
}
HParseResult *tmp_res = perform_lowlevel_parse(state, parser);
if (parser->vtable->higher) {
// the base variable has passed equality tests with the cache
h_slist_pop(state->lr_stack);
// update the cached value to our new position
HParserCacheValue *cached = h_hashtable_get(state->cache, key);
assert(cached != NULL);
cached->input_stream = state->input_stream;
}
// setupLR, used below, mutates the LR to have a head if appropriate, so we check to see if we have one
if (!base || NULL == base->head) {
h_hashtable_put(state->cache, key, cached_result(state, tmp_res));
return tmp_res;
} else {
base->seed = tmp_res;
HParseResult *res = lr_answer(key, state, base);
return res;
}
} else {
// it exists!
state->input_stream = m->input_stream;
if (PC_LEFT == m->value_type) {
setupLR(parser, state, m->left);
return m->left->seed;
} else {
return m->right;
}
}
}
int h_packrat_compile(HAllocator* mm__, HParser* parser, const void* params) {
parser->backend = PB_PACKRAT;
return 0; // No compilation necessary, and everything should work
// out of the box.
}
void h_packrat_free(HParser *parser) {
parser->backend = PB_PACKRAT; // revert to default, oh that's us
}
static uint32_t cache_key_hash(const void* key) {
return h_djbhash(key, sizeof(HParserCacheKey));
}
static bool cache_key_equal(const void* key1, const void* key2) {
return memcmp(key1, key2, sizeof(HParserCacheKey)) == 0;
}
static uint32_t pos_hash(const void* key) {
return h_djbhash(key, sizeof(HInputStream));
}
static bool pos_equal(const void* key1, const void* key2) {
return memcmp(key1, key2, sizeof(HInputStream)) == 0;
}
HParseResult *h_packrat_parse(HAllocator* mm__, const HParser* parser, HInputStream *input_stream) {
HArena * arena = h_new_arena(mm__, 0);
// out-of-memory handling
jmp_buf except;
h_arena_set_except(arena, &except);
if(setjmp(except)) {
h_delete_arena(arena);
return NULL;
}
HParseState *parse_state = a_new_(arena, HParseState, 1);
parse_state->cache = h_hashtable_new(arena, cache_key_equal, // key_equal_func
cache_key_hash); // hash_func
parse_state->input_stream = *input_stream;
parse_state->lr_stack = h_slist_new(arena);
parse_state->recursion_heads = h_hashtable_new(arena, pos_equal, pos_hash);
parse_state->arena = arena;
HParseResult *res = h_do_parse(parser, parse_state);
h_slist_free(parse_state->lr_stack);
h_hashtable_free(parse_state->recursion_heads);
// tear down the parse state
h_hashtable_free(parse_state->cache);
if (!res)
h_delete_arena(parse_state->arena);
return res;
}
HParserBackendVTable h__packrat_backend_vtable = {
.compile = h_packrat_compile,
.parse = h_packrat_parse,
.free = h_packrat_free
};